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Abstract
Objectives: To investigate whether postnatal benzo(a)pyrene (B(a)P) exposure caused the impairments on the process of 
neurodevelopment and the alteration in the calcium medium in the neonatal rats. Material and Methods: Eighty neona-
tal Sprague Dawley (SD) rats were randomly divided into 5 groups (untreated control group, vehicle group, 0.02 mg/kg, 
0.2 mg/kg and 2 mg/kg B(a)P-exposed group). Rats were treated with B(a)P by the intragastric administration from post-
natal day (PND) 4 to 25. Morris water maze (MWM) was employed to observe the spatial memory of rats. The activ-
ity of calcium adenosine triphosphatase (Ca2+-ATPase), sodium-potassium adenosine triphosphatase (Na+-K+-ATPase) 
and calcium-magnesium adenosine triphosphatase (Ca2+-Mg2+-ATPase) in the hippocampus were detected by commercial 
kits. Fura-2 pentakis(acetoxymethyl) (Fura-2/AM) probe and reactive oxygen species (ROS) reagent kit were used for 
measuring the concentration of Ca2+ and ROS in the hippocampus synapse, respectively. Results: Rats exposed to B(a)P 
resulted in the deficits in the spatial memory manifested by the increased escape latency and decreased number of cross-
ing platform and time spent in target quadrant in comparison with the control groups. Benzo(a)pyrene exposure caused 
the significant decrease in the ATPase activity in the hippocampus and caused Ca2+ overload in the synaptic, besides, 
the ROS concentration increased significantly which may further induce neurobehavioral impairment of the neonatal rats. 
Conclusions: Our findings suggest that postnatal B(a)P exposure may cause the neurobehavioral impairments in the neona-
tal rats, which were mediated by the decreased ATPase activity and elevated Ca2+ concentration. Int J Occup Med Environ 
Health 2017;30(2):203–211
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of Ca2+ within the cells forms the basis of cellular signal 
transduction. The presynaptic membrane Ca2+ channel 
may further mediate Ca2+ influx, and then actualize syn-
aptic vesicle exocytosis and neurotransmitter release [13].
The neurotoxic effects of B(a)P have been gradually real-
ized. However, the details underlying mechanisms are not 
completely understood. Previous studies demonstrated 
that one of the main mechanisms of nervous impairments 
was the inhibition of adenosinetriphosphatase (ATPase) 
activity as well as the increasing intracellular calcium 
concentration [14–16]. The increased ATPase activity 
may markedly enhance the transport capability of Ca2+, 
and then suppress the occurrence of Ca2+ overload in 
brain [17]. Calcium overload is the “final common path-
way” that causes the neuron damage. As yet, little relevant 
studies have expatiated the relationship between Ca2+ and 
neurotoxic effect caused by B(a)P.
Based on these considerations, the objective of this study pre-
sented here has been to investigate whether the B(a)P expo-
sure causes the neurodevelopment impairments and the dis-
turbance in the Ca2+ concentration in the neonatal rats.

MATERIAL AND METHODS
Materials and reagents
Benzo(a)pyrene (99% purity), purchased from Sigma-Al-
drich Co. (St. Louis, MO, USA), was dissolved in peanut 
and sonicated for 30 min at 40°C. The ATPase detection 
kits and reactive oxygen species (ROS) detection kit were 
all obtained from the Nanjing Jiancheng Bioengineering In-
stitute (Nanjing, China). Fura-2 pentakis(acetoxymethyl) 
(Fura-2/AM) calcium fluorescent probes were purchased 
from Sigma-Aldrich Co.

Animals and treatment
Eighty neonatal healthy SD rats, 40 male and female 
rats, the postnatal day (PND) 4 of age (the day of de-
livery was considered PND 0), were obtained from 
the Chongqing Medical University Lab Animal Center. 

INTRODUCTION
Benzo(a)pyrene (B(a)P), ubiquitous neurotoxic sub-
stance, widely exists in the production and living envi-
ronment, mainly formed during industrial processes and 
products manufacturing, such as oil combustion, auto-
mobile exhausts, tobacco smoke, broiled foods [1–3]. 
Benzo(a)pyrene and its metabolites may cross the brain-
blood barrier because of the highly lipophilic property, 
and the brain is very hard to eliminate them. Thus, B(a)P 
exposure may have an advanced impact on the central ner-
vous system (CNS) [4].
Besides its carcinogenicity, some studies have also re-
vealed that B(a)P has neurobehavioral toxicity [5,6]. 
A number of epidemiological studies have shown that 
children may be more sensitive to neurological poison 
because of their immature nervous system. Several ex-
perimental studies have further revealed that B(a)P could 
cause the deficits in the process of cognitive development 
in the infant Sprague Dawley (SD) rats and thus inducing 
neural impairment [6,7]. Moreover, the gestational expo-
sure to B(a)P may affect the neural development and lead 
to cognitive decline [3,8].
As an intracellular second messenger, calcium (Ca2+) 
widely distributes in the brain, heart, muscle and endo-
crine cells. Calcium in the cytoplasm is normally active as 
the signaling mediator in the numerous cellular processes, 
including cell proliferation, differentiation, and survival/
death [9]. More importantly, does Ca2+ also play an im-
portant role in the regulation of gene expression, muscle 
contraction and hormone release [10,11].
Calcium flows among intracellular and organelles and cy-
toplasm constitute the essential mode of action for the var-
ious physiological functions of the body. Neuronal cells 
heavily rely on the strict regulation of intracellular calci-
um concentration [12]. Cells move free Ca2+ in and out of 
cells through the transmembrane channel, and control in-
tracellular Ca2+ concentration by many means of calcium 
transport systems. It is also noteworthy that the elevation 
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facing the pool wall. All the rats had been allowed to swim 
until they found the platform with a maximum allotted 
time of 60 seconds. If the rat had not found the platform 
within 60 s, it was guided to the platform by the experi-
menter and allowed to stay on the platform for 20 seconds. 
After each trail, the rats were thoroughly wiped dry with 
a towel and rested for at least 5 min before the next trail.

Probe test
After the last hidden platform trail, the rats were given 
a 60 s probe test of the spatial location without the plat-
form. The numbers of crossing the original platform loca-
tion and the percentage time spent in the target quadrant 
were recorded for each rat.

ATPase activity detection
After the behavioral test, 4 male and female rats were 
randomly chosen from each group under pentobarbital-
sodium anesthesia and the hippocampus was isolated 
and weighted. Then, the tissues were rinsed and homog-
enized with ice-cold saline. The tissue homogenates were 
centrifuged at 3500 g for 10 min, and supernatants were 
obtained. The activities of calcium adenosine triphos-
phatase (Ca2+-ATPase), sodium-potassium adenosine tri-
phosphatase (Na+-K+-ATPase) and calcium-magnesium 
adenosine triphosphatase (Ca2+-Mg2+-ATPase) in the hip-
pocampus were assayed at a wavelength of 636 nm. All 
procedures were performed according to the manufactur-
er’s protocols. The concentration of protein was assessed 
by Coomassie Brilliant Blue method [18].

Ca2+ concentration detection
Calcium concentration was determined by Fura-2AM 
probe as described by Hiroshi et al. [19]. Briefly, 4 male 
and female rats were randomly chosen from each group 
and killed. After the hippocampus was isolated and 
weighted, 10× ice-cold sucrose solution (0.32 mol/l) was 
added and rinsed at 4°C. The tissue homogenates were 

The animals were housed in a standard 12:12 h light-dark 
cycle with a temperature of 24±1°C and a relative hu-
midity of 50±10%. Non-toxic dyes were used for num-
bering and identifying each rat, and then the rats were 
randomly divided into 5 groups as follows: the control 
group, vehicle group (penut oil), 0.02 mg/kg B(a)P-ex-
posed group, 0.2 mg/kg B(a)P-exposed group and 2 mg/kg 
B(a)P-exposed group. Benzo(a)pyrene and solvent were 
given to the rats by means of the intragastric administra-
tion from PND 4 to PND 25.
After treatment, all the rats were redistributed to the orig-
inal nursing cages. The rats were weaned on PND 21, and 
these weaned rats were redistributed to cages according 
to the same-sex and treatment groups. During the experi-
ment period, the body weight, diet, activities and nervous 
system reactions were recorded.

Morris water maze
The spatial memory of rats was examined by Morris water 
maze (MWM). The MWM consisted of a stainless steel 
circular pool (diameter of 100 cm and depth of 40 cm), 
filled in with water at the 22±1°C, and made opaque by 
means of the non-toxic white paint. The pool was random-
ly divided into 4 equal quadrants and a circular platform 
of 9 cm in diameter was submerged 1 cm below the wa-
ter surface, fixed in the center of one of the 4 quadrants. 
A video camera was placed above the maze to observe 
the behavior of animals.

Hidden platform test
The visualization platform training was conducted before 
the hidden platform test. All the rats were permitted to 
swim freely for 120 seconds in the pool without the plat-
form to adapt to the swimming environment. The hidden 
platform test began the day after habituation. The behav-
ioral test was taken for 6 consecutive days, and each rat 
was trained for 4 trails per day. For each trail, a rat was 
gently and randomly placed into one of the quadrants, 
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of variance, the non-parametric Kruskal-Wallis test was 
performed. P-value < 0.05 was accepted as evidence of 
significance.

RESULTS
Animal general observation
Few rats of 2 mg/kg B(a)P group appeared to experience 
declined activity and retarded weight growth after B(a)P 
exposure for 3 days. No significant changes in the body 
weight were found in other groups. The number of rats 
gradually increased with the exposure time prolonged. 
Moreover, all the rats in 2 mg/kg B(a)P group appeared 
to prove the above situation on 14th day after exposure, 
while few rats of 0.2 mg/kg B(a)P group appeared to prove 
the same situation. No obvious abnormality was found 
in 0.02 mg/kg B(a)P group and control groups.

Hidden platform test
In the hidden platform test, there was no significant ef-
fect on the gender of escape latency (treatment × gen-
der: p > 0.05). Thus, all rats were examined together. 
The results showed that, as compared with B(a)P-treated 
groups, the slope of escape latency in the control groups 
dropped faster with the increasing training days, and it 
reached almost a plateau on day 4. However, as compared 
with the control groups, the escape latency was significant-
ly higher in the B(a)P treated groups (F(4, 75) = 14.262, 
p < 0.05) (Figure 1).

Probe test
The ability of spatial memory was typically reflected by 
the residence time in the target quadrant and the num-
ber of crossing platform. The result of the probe test 
showed that the number of the crossing platform and 
the time spent in the target quadrant of B(a)P-treated 
groups were significantly decreased (F(4, 75) = 8.684 and 
F(4, 75) = 10.437, p < 0.05) when compared with the con-
trol groups (Figure 2).

centrifuged at 1500 g for 10 min, and the supernatants were 
obtained. Subsequently, 2 ml sucrose solution (1.20 mol/l) 
was added in the supernatant and then centrifuged 
at 40 000 g for 20 min. Diluted intermediate band with 
sucrose solution (0.32 mol/l) and 2 ml sucrose (0.8 mol/l) 
were added slowly, and further centrifuged at 40 000 g 
for 20 min. The sediment was synaptosome.
The synaptosomes cultured on the coverglass were incu-
bated with 2 μM Fura-2/AM for 20 min at room tempera-
ture. Each coverglass was placed under a fluorescence 
microscope and perfused with the phosphate buffered 
saline (PBS) buffer containing 20 mM 4-(2-hydroxyerhyl)
piperazine-1-erhanesulfonic acid (HEPES), 115 mmol so-
dium chloride (NaCl), 5.4 mmol potassium chloride (KCl), 
1 mmol magnesium chloride (MgCl2), 1 mmol calcium 
chloride (CaCl2), and 10 mmol glucose, pH = 7.4. The ab-
sorbance was measured by a Hitachi-850 fluorescence 
spectrophotometer with excitation wavelength at 350 nm 
and emission wave length at 340 nm.

ROS content detection
After the hippocampus homogenates had been obtained, 
10 μl 2,7-dichlorofuorescin diacetate (DCFH-DA) solu-
tion (1 mmol/l) was added and then incubated for 30 min 
at 37°C. The absorbance was measured by a fluorescence 
spectrophotometer with excitation wavelength at 500 nm 
and emission wave length at 485 nm. The concentration of 
protein was assessed by means of the Coomassie Brilliant 
Blue method.

Statistical analysis
Statistical analyses were carried out by using SPSS ver-
sion 17.0 (SPSS, Inc., Chicago, IL, USA). Data was 
presented as the mean (M) ± standard deviation (SD). 
The 2-, 3-factor and the repeated measure analysis of 
variance (ANOVA) were applied, and the Fisher’s least 
significant difference (LSD) t-test used as the ANO-
VAs was significant. If the data proved heterogeneity 
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activity, Ca2+-Mg2+-ATPase activity and Ca2+-ATPase ac-
tivity in the 2 mg/kg B(a)P-treated group were significantly 
decreased as compared with the control group. Further-
more, the ATPase activity showed a significant decrease 
with the increasing doses of B(a)P (p < 0.05) (Figure 3).

ATPase activity
The results of ATPase activity showed that B(a)P ex-
posure had no significant effect on the ATPase ac-
tivity between the gender (treatment × gender: 
p > 0.05). Our results showed that the Na+-K+-ATPase 
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Fig. 1. The escape latencies of Morris water maze (MWM) 
after exposure to benzo(a)pyrene (B(a)P) of neonatal rats 
in the hidden platform (N = 12)
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Fig. 2. Effects of benzo(a)pyrene (B(a)P) on neurobehavioral function of neonatal rats in the probe test (N = 12): a) rats crossing 
platform in target quadrant, b) time spent in target quadrant
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rats [22–25]. Thus, in this study, the neonatal SD rats 
on PND 4 to 25 were chosen for B(a)P acute exposure and 
the effects on neurodevelopment were investigated.
Environment hazards on the function of nervous system 
dysfunction occurred much earlier than pathological dam-
age, manifested by neurobehavioral function changes. 
The MWM is a classical method for studying the learning, 
memory, spatial orientation and cognitive ability of mice. 
Our findings have revealed that the escape latency increas-
es while the number of crossing platform and time spent in 
target quadrant is decreased by B(a)P as compared to con-
trol groups, indicating that the spatial memory is impaired 
in the rats exposed to B(a)P. These results are in agreement 
with Bouayed [26] who has reported that B(a)P exposure 
induces the impairments in the behavioral function of neo-
natal rats. Our data also reflects that the neurotoxic effects 
of B(a)P are restricted to 0.2 mg/kg and 2 mg/kg of B(a)P.
Adenosine triphosphatase, a protease on the biofilm, ex-
ists in the histiocyte and organelle membranes and plays 
an important role in the substance transportation, en-
ergy conversion and information transmission [27]. Cal-
cium adenosine triphosphatase and calcium-magnesium 

Ca2+ and ROS content
As shown in the Figure 4, the concentration of Ca2+ 
and ROS showed no significant difference in the gender 
in B(a)P exposed groups (treatment × gender: p > 0.05). 
The Ca2+ and ROS concentration increased significantly 
in 0.2 mg/kg and 2 mg/kg B(a)P-treated group. More-
over, the concentration of Ca2+ and ROS in the synapse 
increased with the increasing doses of B(a)P (p < 0.05).

DISCUSSION
Benzo(a)pyrene, as lipophilic organic compounds, may 
easily assemble in the lipid composition containing tissues, 
especially in the neural tissue. Importantly enough, B(a)P 
may also permeate the blood-brain barrier and then enter 
the CNS. Previous studies have indicated that B(a)P ex-
posure causes the alteration of neuromotor behaviors and 
induces the impairment in the hippocampus [4,6,20,21]. 
The neonatal period is the critical period of brain develop-
ment, the proliferation of nerve cells, hippocampal granule 
cells and the formation of synaptic and myelination usually 
reach the growth spurt on PND 20. Moreover, the brain 
tissue is sensitive for the neurotoxic effects in the neonatal 
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Fig. 4. Effects of a) benzo(a)pyrene (B(a)P) on calcium (Ca2+) concentration in the hippocampus, b) B(a)P on reactive oxygen 
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increase the Ca2+ level in cytoplasm and increase the ex-
citability by mobilizing the release of Ca2+ in mitochon-
dria. Rats exposed to B(a)P experience a significant de-
crease in learning and memory ability and ATPase activity, 
while they also experience the increase in the content of 
the ROS and Ca2+. The reason may be that B(a)P expo-
sure could cause oxidative stress, resulting in excessive of 
free radicals, leading to Ca2+ overload, then cause the dys-
function of energy and metabolism of nerve cells, eventu-
ally leading to learning and memory deficits.

CONCLUSIONS
Our study has shown that acute postnatal B(a)P exposure 
could induce the reduction of sodium-potassium adenosine 
triphosphatase, calcium-magnesium adenosine triphospha-
tase and Ca2+-ATPase activity, cause the Ca2+ overload in 
the synapse, and thus leading to the neurobehavioral im-
pairments. These results also indicate that the reduction 
of ATPase activity and Ca2+ overload of hippocampal tissue 
in the neonatal rats may be the potential mechanism for ner-
vous system impairment after having been exposed to B(a)P.
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